Secondly, the extinction coefficients at all the  $C_0$  values measured are determined using the  $\varepsilon_D$ ,  $\varepsilon_{D_2}$  and  $K_{Agg}$  values obtained above, and the end product is designated  $\varepsilon_{Cald}$ . The equations utilized for this calculation are derived as follows

Dyes and Pigments 19 (1992) 161-168



# New Procedure to Calculate the Aggregation Constants of Dyes

## Kunihiro Hamada & Masaru Mitsuishi

Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386, Japan

(Received 20 January 1992; accepted 2 March 1992)

#### ABSTRACT

A new procedure to calculate the aggregation constants of dyes is proposed. This procedure can determine not only the aggregation constants but also the extinction coefficients of dye monomers. It is therefore of particular value in the case of dyes which form aggregates even at low concentration. The aggregation constants for the dyes studied were calculated using the present procedure and compared with the previous values. From the results, factors pertinent to the estimation of the aggregation constants are discussed.

### 1 INTRODUCTION

The authors have previously investigated the aggregation behaviour of azo dyes, most of which contained fluorine substituents, by means of visible absorption spectra and <sup>19</sup>F nuclear magnetic resonance measurements. <sup>1-6</sup> Through these studies it became apparent that the determination of the extinction coefficients for dye monomers is difficult, because in the case of dyes having large aggregation constants, the dye aggregates exist even at the limited dilute concentration where spectroscopic measurements are possible. Thus, it is difficult to calculate the extinction coefficients of dye monomers spectroscopically.

In this context a new procedure to calculate simultaneously the

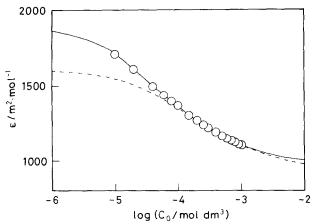



Fig. 1. Relationship between  $\varepsilon$  at 540 nm and the dye concentration for R-1 at 298 K.

of the dye monomers. Furthermore, the wavelength (540 nm for both **R-1** and **R-2**) where the change of the extinction coefficients with increasing dye concentration is largest was used in order to obtain the most accurate values, although the same values were given at all the wavelengths measured because of the existence of isosbestic points.

Figure 1 shows the plot of the observed extinction coefficients,  $\varepsilon$ , against the logarithm of the dye concentrations for **R-1** at 298 K, where the solid line

TABLE 1
The  $\varepsilon$  and  $\varepsilon_{Cald}$  values for R-1 at 298 K

| Dye concentration (mol dm <sup>-3</sup> ) | $(m^2 mol^{-1})$ | $\frac{\varepsilon_{C_{\mathrm{ald}}}}{(m^2  mol^{-1})}$ | $\frac{ \varepsilon - \varepsilon_{Cald} }{(m^2  mol^{-1})}$ |
|-------------------------------------------|------------------|----------------------------------------------------------|--------------------------------------------------------------|
| 1·00 × 10 <sup>-5</sup>                   | 1 710            | 1 707                                                    | 3 (0.18%)                                                    |
| $2.00 \times 10^{-5}$                     | 1610             | 1 612                                                    | 2 (0.12%)                                                    |
| $4.00 \times 10^{-5}$                     | 1 498            | 1 503                                                    | 5 (0.33%)                                                    |
| $6.00 \times 10^{-5}$                     | 1 437            | 1 438                                                    | 1 (0.07%)                                                    |
| $8.00 \times 10^{-5}$                     | 1 396            | 1 393                                                    | 3 (0.21%)                                                    |
| $1.00 \times 10^{-4}$                     | 1 364            | 1 359                                                    | 5 (0.37%)                                                    |
| $1.50 \times 10^{-4}$                     | 1 299            | 1 302                                                    | 3 (0.23%)                                                    |
| $2.00 \times 10^{-4}$                     | 1 267            | 1 264                                                    | 3 (0.24%)                                                    |
| $2.50 \times 10^{-4}$                     | 1 236            | 1 237                                                    | 1 (0.08%)                                                    |
| $3.00 \times 10^{-4}$                     | 1 219            | 1 216                                                    | 3 (0.25%)                                                    |
| $4.00 \times 10^{-4}$                     | 1 188            | 1 185                                                    | 3 (0.25%)                                                    |
| $5.00 \times 10^{-4}$                     | 1 165            | 1 164                                                    | 1 (0.09%)                                                    |
| $6.00 \times 10^{-4}$                     | 1 147            | 1 147                                                    | 0 (0.00%)                                                    |
| $7.00 \times 10^{-4}$                     | 1 133            | 1 134                                                    | 1 (0.09%)                                                    |
| $8.00 \times 10^{-4}$                     | 1 121            | 1 123                                                    | 2 (0.18%)                                                    |
| $9.00 \times 10^{-4}$                     | 1 110            | 1 114                                                    | 4 (0.36%)                                                    |
| $1.00 \times 10^{-3}$                     | 1 105            | 1 106                                                    | 1 (0.09%)                                                    |

|     | 288 K         | 298 K           | 308 K          | 318 K          |
|-----|---------------|-----------------|----------------|----------------|
|     |               | In the abse     | nce of urea    |                |
| R-1 | $21400\pm300$ | $14700 \pm 200$ | $9100\pm200$   | $5810 \pm 120$ |
| R-2 | $8360\pm150$  | $5100\pm80$     | $2840 \pm 60$  | $1390 \pm 40$  |
|     |               | In the prese    | ence of urea   |                |
| R-1 | $15100\pm300$ | $9600 \pm 200$  | $6010 \pm 100$ | $4250 \pm 100$ |
| R-2 | $5570 \pm 90$ | $3320 \pm 80$   | $1800 \pm 40$  | $1060 \pm 40$  |
|     |               |                 |                |                |

TABLE 2 The Aggregation Constants,  $K_{Agg}$  (dm<sup>3</sup> mol<sup>-1</sup>)

expresses the fitting curve determined by means of the present procedure and the broken line is the fitting curve calculated using  $\varepsilon_D$  of the authors' previous paper.<sup>6</sup> As the value at  $5 \times 10^{-6}$  mol dm<sup>-3</sup> was considered in the previous study,<sup>6</sup> the  $\varepsilon_D$  value was estimated as a much lower value than the real one. The data point at  $5 \times 10^{-6}$  mol dm<sup>-3</sup> has a large error ( $\pm 80$  m<sup>2</sup> mol<sup>-3</sup>) because of the smaller value of the absorbance (about 0·1), so that it is neglected in the present study. The observed extinction coefficients,  $\varepsilon$ , the calculated extinction coefficients,  $\varepsilon_{Cald}$  and the difference between the above two values for **R-1** at 298 K are given in Table 1. This table suggests that the present procedure is more reasonable for determining the aggregation constants. The method which the authors had previously utilized places emphasis on the linearity of the plot of  $(\Delta \varepsilon/C_0)^{1/2}$  against  $\Delta \varepsilon$  in only a high concentration region, but the present method demonstrates that analysis in all the concentration regions is necessary.

Table 2 shows the aggregation constants,  $K_{Agg}$  for **R-1** and **R-2** in the absence and presence of urea. Some of the  $K_{Agg}$  values given in Table 2 are

TABLE 3 The  $\varepsilon_D$  and  $\varepsilon_{D_2}$  Values (m<sup>2</sup> mol<sup>-1</sup>) at 540 nm

|                        | 288 K | 298 K | 308 K | 318 K |
|------------------------|-------|-------|-------|-------|
| $\epsilon_D$           |       |       |       |       |
| R-1 (absence of urea)  | 1879  | 1888  | 1871  | 1 848 |
| R-1 (presence of urea) | 1 964 | 1 934 | 1895  | 1871  |
| R-2 (absence of urea)  | 1 967 | 1963  | 1933  | 1 893 |
| R-2 (presence of urea) | 2014  | 1 990 | 1 939 | 1 903 |
| $\varepsilon_D$ ,      |       |       |       |       |
| R-1 (absence of urea)  | 927   | 949   | 973   | 980   |
| R-1 (presence of urea) | 946   | 961   | 978   | 1 000 |
| R-2 (absence of urea)  | 1 062 | 1 080 | 1081  | 1 052 |
| R-2 (presence of urea) | 1 101 | 1 097 | 1 101 | 1 108 |

| TABLE 4                                                         |
|-----------------------------------------------------------------|
| The Enthalpy Change, $\Delta H_{Agg}$ , and the Entropy Change, |
| $\Delta S_{	extsf{Agg}}$                                        |

|     | $\Delta H_{ m Agg} \ (kJmol^{-1})$ | $\Delta S_{\mathbf{Agg}} \\ (J  mol^{-1}  K^{-1})$ |  |
|-----|------------------------------------|----------------------------------------------------|--|
|     | In the absence of urea             |                                                    |  |
| R-1 | $-33.4 \pm 1.7$                    | $-33 \pm 6$                                        |  |
| R-2 | $-45\pm4$                          | $-82 \pm 11$                                       |  |
|     | In the pre                         | sence of urea                                      |  |
| R-1 | $-32.6 \pm 1.0$                    | $-33 \pm 3$                                        |  |
| R-2 | $-42.6 \pm 1.4$                    | $-76 \pm 5$                                        |  |

much larger than those shown in the previous paper<sup>6</sup> and others are a little smaller. This is clearly due to the more accurate values of  $\varepsilon_D$ . The  $\varepsilon_D$  values determined using the present procedure are given in Table 3 together with the  $\varepsilon_{D_2}$  values. From this table, it is apparent that the  $\varepsilon_D$  values change with temperature and the existence of the cosolute. In the previous paper,<sup>6</sup> this change was not considered, so that inexact results were obtained. The dependence of  $\varepsilon_D$  on both temperature and the existence of the cosolute is probably attributable to variation of the hydration around the dyes.

From the temperature dependence of  $K_{Agg}$ , the enthalpy change,  $\Delta H_{Agg}$ , and the entropy change,  $\Delta S_{Agg}$ , were calculated (Table 4). These thermodynamic parameters showed the opposite behaviour to those given in the authors' previous paper:<sup>6</sup> the present results suggest that the aggregation of **R-1** is less enthalpic and more entropic than that of **R-2**.

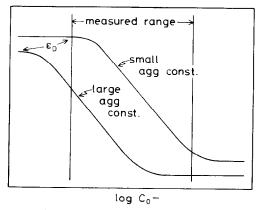



Fig. 2. Schematic curves of  $\varepsilon$  against dye concentration with low and high aggregation constant.

|       | for Other Dyes Studied |                                |  |  |
|-------|------------------------|--------------------------------|--|--|
|       | Present study          | Previous study                 |  |  |
| AS    | 870 ± 50               | 590 ± 30 (Ref. 4)              |  |  |
| FAS   | $1460 \pm 50$          | $1180 \pm 50$ (Ref. 4)         |  |  |
| m-FTS | $1500 \pm 80$          | $510 \pm 50$ (Ref. 1)          |  |  |
| AR    | $310 \pm 20$           | $300 \pm 20$ (Ref. 4)          |  |  |
| FAR   | $200 \pm 30$           | $70 \sim 140 \text{ (Ref. 4)}$ |  |  |
| m-FTR | $203 \pm 11$           | $260 \pm 20$ (Ref. 2)          |  |  |

TABLE 5 The Aggregation Constants,  $K_{Agg}$  (dm<sup>3</sup> mol<sup>-1</sup>), at 298 K for Other Dyes Studied

X = H.

X = H,

X = H

Thus, it must be concluded that in the previous paper, 6 the use of inexact  $\varepsilon_D$ values led to misleading results.

The aggregation constants,  $K_{Agg}$ , for other dyes were determined using the present procedure (Table 5). In the case of dyes with smaller  $K_{Agg}$  values, differences between the present and previous results are not evident. However, with large  $K_{Agg}$  values, the results show a large discrepancy. This may be explained by means of a schematic figure (Fig. 2). In the case of the dyes having smaller  $K_{Agg}$  values,  $\varepsilon_D$  can be determined experimentally, while for the dyes whose  $K_{Agg}$  values are larger,  $\varepsilon_D$  must be calculated by extrapolation; this extrapolation includes the main error factor.

The present procedure has high accuracy in extrapolation, and therefore it is believed that the method is able to determine more accurate values of  $K_{Agg}$ and  $\varepsilon_{\rm p}$ .

# REFERENCES

1. Hamada, K., Kubota, H., Ichimura, A., Iijima, T. & Amiya, S., Ber. Bunsenges. Phys. Chem., 89 (1985) 859.

- Hamada, K., Take, S., Iijima, T. & Amiya, S., J. Chem. Soc., Faraday Trans. 1, 82 (1986) 3141.
- 3. Skrabal, P., Bangerter, F., Hamada, K. & Iijima, T., Dyes Pigm., 8 (1987) 371.
- 4. Hamada, K., Iijima, T. & Amiya, S., J. Phys. Chem., 91 (1990) 3766.
- 5. Hamada, K., Fujita, M. & Mitsuishi, M., J. Chem. Soc., Faraday Trans., 86 (1990) 4031.
- 6. Hamada, K., Nonogaki, H., Fukushina, Y., Munkhbat, B. & Mitsuishi, M., *Dyes Pigm.*, **16** (1991) 111.